Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimization and Validation of Diffusion MRI-based Fiber Tracking with Neural Tracer Data as a Reference (1911.13215v2)

Published 27 Nov 2019 in physics.med-ph, eess.IV, and q-bio.QM

Abstract: Diffusion-weighted magnetic resonance imaging (dMRI) allows non-invasive investigation of whole-brain connectivity, which can potentially help to reveal the brain's global network architecture and abnormalities involved in neurological and mental disorders. However, the reliability of connection inferences from dMRI-based fiber tracking is still debated, due to low sensitivity, dominance of false positives, and inaccurate and incomplete reconstruction of long-range connections. Furthermore, parameters of tracking algorithms are typically tuned in a heuristic way, which leaves room for manipulation of an intended result. Here we propose a data-driven framework to optimize and validate parameters of dMRI-based fiber-tracking algorithms using neural tracer data as a reference. Japan's Brain/MINDS Project provides invaluable datasets containing both dMRI and neural tracer data from the same primates. We considered four criteria for goodness of fiber tracking: distance-weighted coverage, true/false positive ratio, projection coincidence, and commissural passage, applied using a multi-objective optimization algorithm. We implemented a variant of non-dominated sorting genetic algorithm II (NSGA-II) to optimize five major parameters of a global fiber-tracking algorithm over multiple brain samples in parallel. Using optimized parameters compared to the default parameters, dMRI-based fiber tracking performance was significantly improved, while minimizing false positives and impossible cross-hemisphere connections. Parameters optimized for 10 tracer injection sites showed good generalization capability for other brain samples. These results demonstrate the importance of data-driven adjustment of fiber-tracking algorithms and support the validity of dMRI-based tractography, if appropriate adjustments are employed.

Citations (18)

Summary

We haven't generated a summary for this paper yet.