Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly Supervised Cell Instance Segmentation by Propagating from Detection Response (1911.13077v1)

Published 29 Nov 2019 in eess.IV, cs.CV, and q-bio.QM

Abstract: Cell shape analysis is important in biomedical research. Deep learning methods may perform to segment individual cells if they use sufficient training data that the boundary of each cell is annotated. However, it is very time-consuming for preparing such detailed annotation for many cell culture conditions. In this paper, we propose a weakly supervised method that can segment individual cell regions who touch each other with unclear boundaries in dense conditions without the training data for cell regions. We demonstrated the efficacy of our method using several data-set including multiple cell types captured by several types of microscopy. Our method achieved the highest accuracy compared with several conventional methods. In addition, we demonstrated that our method can perform without any annotation by using fluorescence images that cell nuclear were stained as training data. Code is publicly available in "https://github.com/naivete5656/WSISPDR".

Citations (37)

Summary

We haven't generated a summary for this paper yet.