Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete-time approximation for backward stochastic differential equations driven by $G$-Brownian motion (1911.13070v2)

Published 29 Nov 2019 in math.NA and cs.NA

Abstract: In this paper, we study the discrete-time approximation schemes for a class of backward stochastic differential equations driven by $G$-Brownian motion ($G$-BSDEs) which corresponds to the hedging pricing of European contingent claims. By introducing an auxiliary extended $\widetilde{G}$-expectation space, we propose a class of $\theta$-schemes to discrete $G$-BSDEs in this space. With the help of nonlinear stochastic analysis techniques and numerical analysis tools, we prove that our schemes admit half-order convergence for approximating $G$-BSDE in the general case. In some special cases, our schemes can achieve a first-order convergence rate. Finally, we give an implementable numerical scheme for $G$-BSDEs based on Peng's central limit theorem and illustrate our convergence results with numerical examples.

Citations (2)

Summary

We haven't generated a summary for this paper yet.