Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SOSD: A Benchmark for Learned Indexes (1911.13014v1)

Published 29 Nov 2019 in cs.DB, cs.DS, and cs.LG

Abstract: A groundswell of recent work has focused on improving data management systems with learned components. Specifically, work on learned index structures has proposed replacing traditional index structures, such as B-trees, with learned models. Given the decades of research committed to improving index structures, there is significant skepticism about whether learned indexes actually outperform state-of-the-art implementations of traditional structures on real-world data. To answer this question, we propose a new benchmarking framework that comes with a variety of real-world datasets and baseline implementations to compare against. We also show preliminary results for selected index structures, and find that learned models indeed often outperform state-of-the-art implementations, and are therefore a promising direction for future research.

Citations (75)

Summary

We haven't generated a summary for this paper yet.