Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Free-riders in Federated Learning: Attacks and Defenses (1911.12560v1)

Published 28 Nov 2019 in cs.LG, cs.CR, and stat.ML

Abstract: Federated learning is a recently proposed paradigm that enables multiple clients to collaboratively train a joint model. It allows clients to train models locally, and leverages the parameter server to generate a global model by aggregating the locally submitted gradient updates at each round. Although the incentive model for federated learning has not been fully developed, it is supposed that participants are able to get rewards or the privilege to use the final global model, as a compensation for taking efforts to train the model. Therefore, a client who does not have any local data has the incentive to construct local gradient updates in order to deceive for rewards. In this paper, we are the first to propose the notion of free rider attacks, to explore possible ways that an attacker may construct gradient updates, without any local training data. Furthermore, we explore possible defenses that could detect the proposed attacks, and propose a new high dimensional detection method called STD-DAGMM, which particularly works well for anomaly detection of model parameters. We extend the attacks and defenses to consider more free riders as well as differential privacy, which sheds light on and calls for future research in this field.

Citations (99)

Summary

We haven't generated a summary for this paper yet.