Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error Resilient Deep Compressive Sensing (1911.12507v1)

Published 28 Nov 2019 in cs.CV, cs.LG, and eess.IV

Abstract: Compressive sensing (CS) is an emerging sampling technology that enables reconstructing signals from a subset of measurements and even corrupted measurements. Deep learning-based compressive sensing (DCS) has improved CS performance while maintaining a fast reconstruction but requires a training network for each measurement rate. Also, concerning the transmission scheme of measurement lost, DCS cannot recover the original signal. Thereby, it fails to maintain the error-resilient property. In this work, we proposed a robust deep reconstruction network to preserve the error-resilient property under the assumption of random measurement lost. Measurement lost layer is proposed to simulate the measurement lost in an end-to-end framework.

Summary

We haven't generated a summary for this paper yet.