Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Large independent sets in triangle-free cubic graphs: beyond planarity (1911.12471v2)

Published 28 Nov 2019 in math.CO and cs.DM

Abstract: Every $n$-vertex planar triangle-free graph with maximum degree at most $3$ has an independent set of size at least $\frac{3}{8}n$. This was first conjectured by Albertson, Bollob\'as and Tucker, and was later proved by Heckman and Thomas. Fraughnaugh and Locke conjectured that the planarity requirement could be relaxed into just forbidding a few specific nonplanar subgraphs: They described a family $\mathcal{F}$ of six nonplanar graphs (each of order at most $22$) and conjectured that every $n$-vertex triangle-free graph with maximum degree at most $3$ having no subgraph isomorphic to a member of $\mathcal{F}$ has an independent set of size at least $\frac{3}{8}n$. In this paper, we prove this conjecture. As a corollary, we obtain that every $2$-connected $n$-vertex triangle-free graph with maximum degree at most $3$ has an independent set of size at least $\frac{3}{8}n$, with the exception of the six graphs in $\mathcal{F}$. This confirms a conjecture made independently by Bajnok and Brinkmann, and by Fraughnaugh and Locke.

Citations (5)

Summary

We haven't generated a summary for this paper yet.