Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Soft Anchor-Point Object Detection (1911.12448v2)

Published 27 Nov 2019 in cs.CV

Abstract: Recently, anchor-free detection methods have been through great progress. The major two families, anchor-point detection and key-point detection, are at opposite edges of the speed-accuracy trade-off, with anchor-point detectors having the speed advantage. In this work, we boost the performance of the anchor-point detector over the key-point counterparts while maintaining the speed advantage. To achieve this, we formulate the detection problem from the anchor point's perspective and identify ineffective training as the main problem. Our key insight is that anchor points should be optimized jointly as a group both within and across feature pyramid levels. We propose a simple yet effective training strategy with soft-weighted anchor points and soft-selected pyramid levels to address the false attention issue within each pyramid level and the feature selection issue across all the pyramid levels, respectively. To evaluate the effectiveness, we train a single-stage anchor-free detector called Soft Anchor-Point Detector (SAPD). Experiments show that our concise SAPD pushes the envelope of speed/accuracy trade-off to a new level, outperforming recent state-of-the-art anchor-free and anchor-based detectors. Without bells and whistles, our best model can achieve a single-model single-scale AP of 47.4% on COCO.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Chenchen Zhu (26 papers)
  2. Fangyi Chen (14 papers)
  3. Zhiqiang Shen (172 papers)
  4. Marios Savvides (61 papers)
Citations (142)