Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Calibrationless Parallel MRI using Model based Deep Learning (C-MODL) (1911.12443v2)

Published 27 Nov 2019 in cs.LG, eess.SP, and stat.ML

Abstract: We introduce a fast model based deep learning approach for calibrationless parallel MRI reconstruction. The proposed scheme is a non-linear generalization of structured low rank (SLR) methods that self learn linear annihilation filters from the same subject. It pre-learns non-linear annihilation relations in the Fourier domain from exemplar data. The pre-learning strategy significantly reduces the computational complexity, making the proposed scheme three orders of magnitude faster than SLR schemes. The proposed framework also allows the use of a complementary spatial domain prior; the hybrid regularization scheme offers improved performance over calibrated image domain MoDL approach. The calibrationless strategy minimizes potential mismatches between calibration data and the main scan, while eliminating the need for a fully sampled calibration region.

Citations (2)

Summary

We haven't generated a summary for this paper yet.