Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Scaling Data-Driven Loop Invariant Inference (1911.11728v2)

Published 26 Nov 2019 in cs.LG, cs.PL, cs.SE, and stat.ML

Abstract: Automated synthesis of inductive invariants is an important problem in software verification. Once all the invariants have been specified, software verification reduces to checking of verification conditions. Although static analyses to infer invariants have been studied for over forty years, recent years have seen a flurry of data-driven invariant inference techniques which guess invariants from examples instead of analyzing program text. However, these techniques have been demonstrated to scale only to programs with a small number of variables. In this paper, we study these scalability issues and address them in our tool oasis that improves the scale of data-driven invariant inference and outperforms state-of-the-art systems on benchmarks from the invariant inference track of the Syntax Guided Synthesis competition.

Citations (1)

Summary

We haven't generated a summary for this paper yet.