Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Network Intrusion Detection based on LSTM and Feature Embedding (1911.11552v1)

Published 26 Nov 2019 in cs.LG, cs.NI, and stat.ML

Abstract: Growing number of network devices and services have led to increasing demand for protective measures as hackers launch attacks to paralyze or steal information from victim systems. Intrusion Detection System (IDS) is one of the essential elements of network perimeter security which detects the attacks by inspecting network traffic packets or operating system logs. While existing works demonstrated effectiveness of various machine learning techniques, only few of them utilized the time-series information of network traffic data. Also, categorical information has not been included in neural network based approaches. In this paper, we propose network intrusion detection models based on sequential information using long short-term memory (LSTM) network and categorical information using the embedding technique. We have experimented the models with UNSW-NB15, which is a comprehensive network traffic dataset. The experiment results confirm that the proposed method improve the performance, observing binary classification accuracy of 99.72\%.

Citations (33)

Summary

We haven't generated a summary for this paper yet.