Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectra2pix: Generating Nanostructure Images from Spectra (1911.11525v1)

Published 26 Nov 2019 in eess.IV, cs.LG, and stat.ML

Abstract: The design of the nanostructures that are used in the field of nano-photonics has remained complex, very often relying on the intuition and expertise of the designer, ultimately limiting the reach and penetration of this groundbreaking approach. Recently, there has been an increasing number of studies suggesting to apply Machine Learning techniques for the design of nanostructures. Most of these studies engage Deep Learning techniques, which entails training a Deep Neural Network (DNN) to approximate the highly non-linear function of the underlying physical process between spectra and nanostructures. At the end of the training, the DNN allows an on-demand design of nanostructures, i.e. the model can infer nanostructure geometries for desired spectra. In this work, we introduce spectra2pix, which is a model DNN trained to generate 2D images of the designed nanostructures. Our model architecture is not limited to a closed set of nanostructure shapes, and can be trained for the design of any geometry. We show, for the first time, a successful generalization ability by designing a completely unseen sub-family of geometries. This generalization capability highlights the importance of our model architecture, and allows higher applicability for real-world design problems.

Summary

We haven't generated a summary for this paper yet.