Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closing the category of finitely presented functors under images made constructive (1911.11469v3)

Published 26 Nov 2019 in math.CT

Abstract: For an additive category $\mathbf{P}$ we provide an explict construction of a category $\mathcal{Q}( \mathbf{P} )$ whose objects can be thought of as formally representing $\frac{\mathrm{im}( \gamma )}{\mathrm{im}( \rho ) \cap \mathrm{im}( \gamma )}$ for given morphisms $\gamma: A \rightarrow B$ and $\rho: C \rightarrow B$ in $\mathbf{P}$, even though $\mathbf{P}$ does not need to admit quotients or images. We show how it is possible to calculate effectively within $\mathcal{Q}( \mathbf{P} )$, provided that a basic problem related to syzygies can be handled algorithmically. We prove an equivalence of $\mathcal{Q}( \mathbf{P} )$ with the subcategory of the category of contravariant functors from $\mathbf{P}$ to the category of abelian groups $\mathbf{Ab}$ which contains all finitely presented functors and is closed under the operation of taking images. Moreover, we characterize the abelian case: $\mathcal{Q}( \mathbf{P} )$ is abelian if and only if it is equivalent to $\mathrm{fp}( \mathbf{P}{\mathrm{op}}, \mathbf{Ab} )$, the category of all finitely presented functors, which in turn, by a theorem of Freyd, is abelian if and only if $\mathbf{P}$ has weak kernels. The category $\mathcal{Q}( \mathbf{P} )$ is a categorical abstraction of the data structure for finitely presented $R$-modules employed by the computer algebra system Macaulay2, where $R$ is a ring. By our generalization to arbitrary additive categories, we show how this data structure can also be used for modeling finitely presented graded modules, finitely presented functors, and some not necessarily finitely presented modules over a non-coherent ring.

Summary

We haven't generated a summary for this paper yet.