Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cracking In-Memory Database Index A Case Study for Adaptive Radix Tree Index (1911.11387v1)

Published 26 Nov 2019 in cs.DB

Abstract: Indexes provide a method to access data in databases quickly. It can improve the response speed of subsequent queries by building a complete index in advance. However, it also leads to a huge overhead of the continuous updating during creating the index. An in-memory database usually has a higher query processing performance than disk databases and is more suitable for real-time query processing. Therefore, there is an urgent need to reduce the index creation and update cost for in-memory databases. Database cracking technology is currently recognized as an effective method to reduce the index initialization time. However, conventional cracking algorithms are focused on simple column data structure rather than those complex index structure for in-memory databases. In order to show the feasibility of in-memory database index cracking and promote to future more extensive research, this paper conducted a case study on the Adaptive Radix Tree (ART), a popular tree index structure of in-memory databases. On the basis of carefully examining the ART index construction overhead, an algorithm using auxiliary data structures to crack the ART index is proposed.

Citations (4)

Summary

We haven't generated a summary for this paper yet.