Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Manifold Gradient Descent Solves Multi-Channel Sparse Blind Deconvolution Provably and Efficiently (1911.11167v3)

Published 25 Nov 2019 in stat.ML, cs.IT, cs.LG, eess.SP, math.IT, and math.OC

Abstract: Multi-channel sparse blind deconvolution, or convolutional sparse coding, refers to the problem of learning an unknown filter by observing its circulant convolutions with multiple input signals that are sparse. This problem finds numerous applications in signal processing, computer vision, and inverse problems. However, it is challenging to learn the filter efficiently due to the bilinear structure of the observations with the respect to the unknown filter and inputs, as well as the sparsity constraint. In this paper, we propose a novel approach based on nonconvex optimization over the sphere manifold by minimizing a smooth surrogate of the sparsity-promoting loss function. It is demonstrated that manifold gradient descent with random initializations will provably recover the filter, up to scaling and shift ambiguity, as soon as the number of observations is sufficiently large under an appropriate random data model. Numerical experiments are provided to illustrate the performance of the proposed method with comparisons to existing ones.

Citations (26)

Summary

We haven't generated a summary for this paper yet.