Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hypocoercivity and sub-exponential local equilibria (1911.10961v2)

Published 25 Nov 2019 in math.AP

Abstract: Hypocoercivity methods are applied to linear kinetic equations without any space confinement, when local equilibria have a sub-exponential decay. By Nash type estimates, global rates of decay are obtained, which reflect the behavior of the heat equation obtained in the diffusion limit. The method applies to Fokker-Planck and scattering collision operators. The main tools are a weighted Poincar\'e inequality (in the Fokker-Planck case) and norms with various weights. The advantage of weighted Poincar\'e inequalities compared to the more classical weak Poincar\'e inequalities is that the description of the convergence rates to the local equilibrium does not require extra regularity assumptions to cover the transition from super-exponential and exponential local equilibria to sub-exponential local equilibria.

Summary

We haven't generated a summary for this paper yet.