Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Looking at the right stuff: Guided semantic-gaze for autonomous driving (1911.10455v2)

Published 24 Nov 2019 in cs.CV and cs.RO

Abstract: In recent years, predicting driver's focus of attention has been a very active area of research in the autonomous driving community. Unfortunately, existing state-of-the-art techniques achieve this by relying only on human gaze information, thereby ignoring scene semantics. We propose a novel Semantics Augmented GazE (SAGE) detection approach that captures driving specific contextual information, in addition to the raw gaze. Such a combined attention mechanism serves as a powerful tool to focus on the relevant regions in an image frame in order to make driving both safe and efficient. Using this, we design a complete saliency prediction framework - SAGE-Net, which modifies the initial prediction from SAGE by taking into account vital aspects such as distance to objects (depth), ego vehicle speed, and pedestrian crossing intent. Exhaustive experiments conducted through four popular saliency algorithms show that on $\mathbf{49/56\text{ }(87.5\%)}$ cases - considering both the overall dataset and crucial driving scenarios, SAGE outperforms existing techniques without any additional computational overhead during the training process. The augmented dataset along with the relevant code are available as part of the supplementary material.

Citations (50)

Summary

We haven't generated a summary for this paper yet.