Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intermittent Demand Forecasting with Deep Renewal Processes (1911.10416v1)

Published 23 Nov 2019 in cs.LG and stat.ML

Abstract: Intermittent demand, where demand occurrences appear sporadically in time, is a common and challenging problem in forecasting. In this paper, we first make the connections between renewal processes, and a collection of current models used for intermittent demand forecasting. We then develop a set of models that benefit from recurrent neural networks to parameterize conditional interdemand time and size distributions, building on the latest paradigm in "deep" temporal point processes. We present favorable empirical findings on discrete and continuous time intermittent demand data, validating the practical value of our approach.

Citations (17)

Summary

We haven't generated a summary for this paper yet.