Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attention Deep Model with Multi-Scale Deep Supervision for Person Re-Identification (1911.10335v3)

Published 23 Nov 2019 in cs.CV and cs.LG

Abstract: In recent years, person re-identification (PReID) has become a hot topic in computer vision duo to it is an important part in intelligent surveillance. Many state-of-the-art PReID methods are attention-based or multi-scale feature learning deep models. However, introducing attention mechanism may lead to some important feature information losing issue. Besides, most of the multi-scale models embedding the multi-scale feature learning block into the feature extraction deep network, which reduces the efficiency of inference network. To address these issue, in this study, we introduce an attention deep architecture with multi-scale deep supervision for PReID. Technically, we contribute a reverse attention block to complement the attention block, and a novel multi-scale layer with deep supervision operator for training the backbone network. The proposed block and operator are only used for training, and discard in test phase. Experiments have been performed on Market-1501, DukeMTMC-reID and CUHK03 datasets. All the experiment results show that the proposed model significantly outperforms the other competitive state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Di Wu (477 papers)
  2. Chao Wang (555 papers)
  3. Yong Wu (56 papers)
  4. De-Shuang Huang (8 papers)
Citations (48)

Summary

We haven't generated a summary for this paper yet.