Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Anaphora Resolution in Dialogue Systems for South Asian Languages (1911.09994v1)

Published 22 Nov 2019 in cs.CL and cs.AI

Abstract: Anaphora resolution is a challenging task which has been the interest of NLP researchers for a long time. Traditional resolution techniques like eliminative constraints and weighted preferences were successful in many languages. However, they are ineffective in free word order languages like most SouthAsian languages.Heuristic and rule-based techniques were typical in these languages, which are constrained to context and domain.In this paper, we venture a new strategy us-ing neural networks for resolving anaphora in human-human dialogues. The architecture chiefly consists of three components, a shallow parser for extracting features, a feature vector generator which produces the word embed-dings, and a neural network model which will predict the antecedent mention of an anaphora.The system has been trained and tested on Telugu conversation corpus we generated. Given the advantage of the semantic information in word embeddings and appending actor, gender, number, person and part of plural features the model has reached an F1-score of 86.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Vinay Annam (1 paper)
  2. Nikhil Koditala (1 paper)
  3. Radhika Mamidi (47 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.