Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Completion from Quantized Samples via Generalized Sparse Bayesian Learning (1911.09935v1)

Published 22 Nov 2019 in cs.IT, eess.SP, and math.IT

Abstract: The recovery of a low rank matrix from a subset of noisy low-precision quantized samples arises in several applications such as collaborative filtering, intelligent recommendation and millimeter wave channel estimation with few bit ADCs. In this paper, a generalized sparse Bayesian learning (Gr-SBL) combining expectation propagation (EP) is proposed to solve the matrix completion (MC), which is termed as MC-Gr-SBL. The MC-Gr-SBL automatically estimates the rank, the factors and their covariance matrices, and the noise variance. In addition, MC-Gr-SBL is proposed to solve the two dimensional line spectral estimation problem by incorporating the MUSIC algorithm. Finally, substantial numerical experiments are conducted to verify the effectiveness of the proposed algorithm.

Citations (2)

Summary

We haven't generated a summary for this paper yet.