Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identify the cells' nuclei based on the deep learning neural network (1911.09830v1)

Published 22 Nov 2019 in cs.CV, cs.LG, and eess.IV

Abstract: Identify the cells' nuclei is the important point for most medical analyses. To assist doctors finding the accurate cell' nuclei location automatically is highly demanded in the clinical practice. Recently, fully convolutional neural network (FCNs) serve as the back-bone in many image segmentation, like liver and tumer segmentation in medical field, human body block in technical filed. The cells' nuclei identification task is also kind of image segmentation. To achieve this, we prefer to use deep learning algorithms. we construct three general frameworks, one is Mask Region-based Convolutional Neural Network (Mask RCNN), which has the high performance in many image segmentations, one is U-net, which has the high generalization performance on small dataset and the other is DenseUNet, which is mixture network architecture with Dense Net and U-net. we compare the performance of these three frameworks. And we evaluated our method on the dataset of data science bowl 2018 challenge. For single model without any ensemble, they all have good performance.

Citations (2)

Summary

We haven't generated a summary for this paper yet.