Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Conditioning in Context-Aware Sequence to Sequence Models (1911.09728v1)

Published 21 Nov 2019 in cs.CL and cs.LG

Abstract: Neural sequence to sequence models are well established for applications which can be cast as mapping a single input sequence into a single output sequence. In this work, we focus on cases where generation is conditioned on both a short query and a long context, such as abstractive question answering or document-level translation. We modify the standard sequence-to-sequence approach to make better use of both the query and the context by expanding the conditioning mechanism to intertwine query and context attention. We also introduce a simple and efficient data augmentation method for the proposed model. Experiments on three different tasks show that both changes lead to consistent improvements.

Citations (13)

Summary

We haven't generated a summary for this paper yet.