Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Volume-preserving Neural Networks (1911.09576v3)

Published 21 Nov 2019 in cs.LG and stat.ML

Abstract: We propose a novel approach to addressing the vanishing (or exploding) gradient problem in deep neural networks. We construct a new architecture for deep neural networks where all layers (except the output layer) of the network are a combination of rotation, permutation, diagonal, and activation sublayers which are all volume preserving. Our approach replaces the standard weight matrix of a neural network with a combination of diagonal, rotational and permutation matrices, all of which are volume-preserving. We introduce a coupled activation function allowing us to preserve volume even in the activation function portion of a neural network layer. This control on the volume forces the gradient (on average) to maintain equilibrium and not explode or vanish. To demonstrate our architecture we apply our volume-preserving neural network model to two standard datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.