Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symbolic summation methods and hypergeometric supercongruences (1911.09497v2)

Published 21 Nov 2019 in math.NT and math.CO

Abstract: In this paper, we establish the following two congruences: \begin{gather*} \sum_{k=0}{(p+1)/2}(3k-1)\frac{\left(-\frac{1}{2}\right)_k2\left(\frac{1}{2}\right)_k4k}{k!3}\equiv p-6p3\left(\frac{-1}{p}\right)+2p3\left(\frac{-1}{p}\right)E_{p-3}\pmod{p4},\ \sum_{k=0}{p-1}(3k-1)\frac{\left(-\frac{1}{2}\right)_k2\left(\frac{1}{2}\right)_k4k}{k!3}\equiv p-2p3\pmod{p4}, \end{gather*} where $p>3$ is a prime, $E_{p-3}$ is the $(p-3)$-th Euler number and $\left(-\right)$ is the Legendre symbol. The first congruence modulo $p3$ was conjectured by Guo and Schlosser recently.

Summary

We haven't generated a summary for this paper yet.