Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
132 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Image Aesthetics Assessment using Multi Channel Convolutional Neural Networks (1911.09301v1)

Published 21 Nov 2019 in cs.CV

Abstract: Image Aesthetics Assessment is one of the emerging domains in research. The domain deals with classification of images into categories depending on the basis of how pleasant they are for the users to watch. In this article, the focus is on categorizing the images in high quality and low quality image. Deep convolutional neural networks are used to classify the images. Instead of using just the raw image as input, different crops and saliency maps of the images are also used, as input to the proposed multi channel CNN architecture. The experiments reported on widely used AVA database show improvement in the aesthetic assessment performance over existing approaches.

Citations (5)

Summary

We haven't generated a summary for this paper yet.