Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Consensus-based Optimization for 3D Human Pose Estimation in Camera Coordinates (1911.09245v3)

Published 21 Nov 2019 in cs.CV

Abstract: 3D human pose estimation is frequently seen as the task of estimating 3D poses relative to the root body joint. Alternatively, we propose a 3D human pose estimation method in camera coordinates, which allows effective combination of 2D annotated data and 3D poses and a straightforward multi-view generalization. To that end, we cast the problem as a view frustum space pose estimation, where absolute depth prediction and joint relative depth estimations are disentangled. Final 3D predictions are obtained in camera coordinates by the inverse camera projection. Based on this, we also present a consensus-based optimization algorithm for multi-view predictions from uncalibrated images, which requires a single monocular training procedure. Although our method is indirectly tied to the training camera intrinsics, it still converges for cameras with different intrinsic parameters, resulting in coherent estimations up to a scale factor. Our method improves the state of the art on well known 3D human pose datasets, reducing the prediction error by 32% in the most common benchmark. We also reported our results in absolute pose position error, achieving 80~mm for monocular estimations and 51~mm for multi-view, on average.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Hedi Tabia (17 papers)
  2. David Picard (44 papers)
  3. Diogo C Luvizon (3 papers)
Citations (21)

Summary

We haven't generated a summary for this paper yet.