Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A 2-approximation for the $k$-prize-collecting Steiner tree problem (1911.09221v1)

Published 20 Nov 2019 in cs.CC and cs.DS

Abstract: We consider the $k$-prize-collecting Steiner tree problem. An instance is composed of an integer $k$ and a graph $G$ with costs on edges and penalties on vertices. The objective is to find a tree spanning at least $k$ vertices which minimizes the cost of the edges in the tree plus the penalties of vertices not in the tree. This is one of the most fundamental network design problems and is a common generalization of the prize-collecting Steiner tree and the $k$-minimum spanning tree problems. Our main result is a 2-approximation algorithm, which improves on the currently best known approximation factor of 3.96 and has a faster running time. The algorithm builds on a modification of the primal-dual framework of Goemans and Williamson, and reveals interesting properties that can be applied to other similar problems.

Citations (3)

Summary

We haven't generated a summary for this paper yet.