Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The complexity of promise SAT on non-Boolean domains (1911.09065v3)

Published 20 Nov 2019 in cs.DM and cs.CC

Abstract: While 3-SAT is NP-hard, 2-SAT is solvable in polynomial time. Austrin, Guruswami, and H\r{a}stad roved a result known as "$(2+\varepsilon)$-SAT is NP-hard" [FOCS'14/SICOMP'17]. They showed that the problem of distinguishing k-CNF formulas that are g-satisfiable (i.e. some assignment satisfies at least g literals in every clause) from those that are not even 1-satisfiable is NP-hard if $\frac{g}{k} < \frac{1}{2}$ and is in P otherwise. We study a generalisation of SAT on arbitrary finite domains, with clauses that are disjunctions of unary constraints, and establish analogous behaviour. Thus we give a dichotomy for a natural fragment of promise constraint satisfaction problems (PCSPs) on arbitrary finite domains. The hardness side is proved using the algebraic approach, via a new general NP-hardness criterion on polymorphisms of the problem, based on a gap version of the Layered Label Cover problem. We show that previously used criteria are insufficient -- the problem hence gives an interesting benchmark of algebraic techniques for proving hardness of approximation problems such as PCSPs.

Citations (21)

Summary

We haven't generated a summary for this paper yet.