Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian interpretation of SGD as Ito process (1911.09011v1)

Published 20 Nov 2019 in stat.ML and cs.LG

Abstract: The current interpretation of stochastic gradient descent (SGD) as a stochastic process lacks generality in that its numerical scheme restricts continuous-time dynamics as well as the loss function and the distribution of gradient noise. We introduce a simplified scheme with milder conditions that flexibly interprets SGD as a discrete-time approximation of an Ito process. The scheme also works as a common foundation of SGD and stochastic gradient Langevin dynamics (SGLD), providing insights into their asymptotic properties. We investigate the convergence of SGD with biased gradient in terms of the equilibrium mode and the overestimation problem of the second moment of SGLD.

Citations (5)

Summary

We haven't generated a summary for this paper yet.