Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Avoiding Jammers: A Reinforcement Learning Approach (1911.08874v2)

Published 20 Nov 2019 in cs.LG, eess.SP, and stat.ML

Abstract: This paper investigates the anti-jamming performance of a cognitive radar under a partially observable Markov decision process (POMDP) model. First, we obtain an explicit expression for uncertainty of jammer dynamics, which paves the way for illuminating the performance metric of probability of being jammed for the radar beyond a conventional signal-to-noise ratio ($\mathsf{SNR}$) based analysis. Considering two frequency hopping strategies developed in the framework of reinforcement learning (RL), this performance metric is analyzed with deep Q-network (DQN) and long short term memory (LSTM) networks under various uncertainty values. Finally, the requirement of the target network in the RL algorithm for both network architectures is replaced with a softmax operator. Simulation results show that this operator improves upon the performance of the traditional target network.

Citations (23)

Summary

We haven't generated a summary for this paper yet.