Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

You Are Here: Geolocation by Embedding Maps and Images (1911.08797v2)

Published 20 Nov 2019 in cs.CV and cs.RO

Abstract: We present a novel approach to geolocalising panoramic images on a 2-D cartographic map based on learning a low dimensional embedded space, which allows a comparison between an image captured at a location and local neighbourhoods of the map. The representation is not sufficiently discriminatory to allow localisation from a single image, but when concatenated along a route, localisation converges quickly, with over 90% accuracy being achieved for routes of around 200m in length when using Google Street View and Open Street Map data. The method generalises a previous fixed semantic feature based approach and achieves significantly higher localisation accuracy and faster convergence.

Citations (21)

Summary

We haven't generated a summary for this paper yet.