Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analysis of Deep Networks for Monocular Depth Estimation Through Adversarial Attacks with Proposal of a Defense Method (1911.08790v1)

Published 20 Nov 2019 in cs.CV

Abstract: In this paper, we consider adversarial attacks against a system of monocular depth estimation (MDE) based on convolutional neural networks (CNNs). The motivation is two-fold. One is to study the security of MDE systems, which has not been actively considered in the community. The other is to improve our understanding of the computational mechanism of CNNs performing MDE. Toward this end, we apply the method recently proposed for visualization of MDE to defending attacks. It trains another CNN to predict a saliency map from an input image, such that the CNN for MDE continues to accurately estimate the depth map from the image with its non-salient part masked out. We report the following findings. First, unsurprisingly, attacks by IFGSM (or equivalently PGD) succeed in making the CNNs yield inaccurate depth estimates. Second, the attacks can be defended by masking out non-salient pixels, indicating that the attacks function by perturbing mostly non-salient pixels. However, the prediction of saliency maps is itself vulnerable to the attacks, even though it is not the direct target of the attacks. We show that the attacks can be defended by using a saliency map predicted by a CNN trained to be robust to the attacks. These results provide an effective defense method as well as a clue to understanding the computational mechanism of CNNs for MDE.

Citations (15)

Summary

We haven't generated a summary for this paper yet.