Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Where is the Bottleneck of Adversarial Learning with Unlabeled Data? (1911.08696v1)

Published 20 Nov 2019 in cs.LG and stat.ML

Abstract: Deep neural networks (DNNs) are incredibly brittle due to adversarial examples. To robustify DNNs, adversarial training was proposed, which requires large-scale but well-labeled data. However, it is quite expensive to annotate large-scale data well. To compensate for this shortage, several seminal works are utilizing large-scale unlabeled data. In this paper, we observe that seminal works do not perform well, since the quality of pseudo labels on unlabeled data is quite poor, especially when the amount of unlabeled data is significantly larger than that of labeled data. We believe that the quality of pseudo labels is the bottleneck of adversarial learning with unlabeled data. To tackle this bottleneck, we leverage deep co-training, which trains two deep networks and encourages two networks diverged by exploiting peer's adversarial examples. Based on deep co-training, we propose robust co-training (RCT) for adversarial learning with unlabeled data. We conduct comprehensive experiments on CIFAR-10 and SVHN datasets. Empirical results demonstrate that our RCT can significantly outperform baselines (e.g., robust self-training (RST)) in both standard test accuracy and robust test accuracy w.r.t. different datasets, different network structures, and different types of adversarial training.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jingfeng Zhang (66 papers)
  2. Bo Han (282 papers)
  3. Gang Niu (125 papers)
  4. Tongliang Liu (251 papers)
  5. Masashi Sugiyama (286 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.