Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Inference on Infinite and Growing Dimensional Time Series Regression (1911.08637v4)

Published 20 Nov 2019 in econ.EM

Abstract: We develop a class of tests for time series models such as multiple regression with growing dimension, infinite-order autoregression and nonparametric sieve regression. Examples include the Chow test and general linear restriction tests of growing rank $p$. Employing such increasing $p$ asymptotics, we introduce a new scale correction to conventional test statistics which accounts for a high-order long-run variance (HLV) that emerges as $ p $ grows with sample size. We also propose a bias correction via a null-imposed bootstrap to alleviate finite sample bias without sacrificing power unduly. A simulation study shows the importance of robustifying testing procedures against the HLV even when $ p $ is moderate. The tests are illustrated with an application to the oil regressions in Hamilton (2003).

Summary

We haven't generated a summary for this paper yet.