Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Reducing Bias in Gender Classification (1911.08556v1)

Published 16 Nov 2019 in cs.LG and stat.ML

Abstract: Societal bias towards certain communities is a big problem that affects a lot of machine learning systems. This work aims at addressing the racial bias present in many modern gender recognition systems. We learn race invariant representations of human faces with an adversarially trained autoencoder model. We show that such representations help us achieve less biased performance in gender classification. We use variance in classification accuracy across different races as a surrogate for the racial bias of the model and achieve a drop of over 40% in variance with race invariant representations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.