Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gromov-Wasserstein Factorization Models for Graph Clustering (1911.08530v1)

Published 19 Nov 2019 in cs.LG and stat.ML

Abstract: We propose a new nonlinear factorization model for graphs that are with topological structures, and optionally, node attributes. This model is based on a pseudometric called Gromov-Wasserstein (GW) discrepancy, which compares graphs in a relational way. It estimates observed graphs as GW barycenters constructed by a set of atoms with different weights. By minimizing the GW discrepancy between each observed graph and its GW barycenter-based estimation, we learn the atoms and their weights associated with the observed graphs. The model achieves a novel and flexible factorization mechanism under GW discrepancy, in which both the observed graphs and the learnable atoms can be unaligned and with different sizes. We design an effective approximate algorithm for learning this Gromov-Wasserstein factorization (GWF) model, unrolling loopy computations as stacked modules and computing gradients with backpropagation. The stacked modules can be with two different architectures, which correspond to the proximal point algorithm (PPA) and Bregman alternating direction method of multipliers (BADMM), respectively. Experiments show that our model obtains encouraging results on clustering graphs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Hongteng Xu (67 papers)
Citations (48)

Summary

We haven't generated a summary for this paper yet.