Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extending General Compact Querieable Representations to GIS Applications (1911.08376v1)

Published 19 Nov 2019 in cs.DS and cs.DB

Abstract: The raster model is commonly used for the representation of images in many domains, and is especially useful in Geographic Information Systems (GIS) to store information about continuous variables of the space (elevation, temperature, etc.). Current representations of raster data are usually designed for external memory or, when stored in main memory, lack efficient query capabilities. In this paper we propose compact representations to efficiently store and query raster datasets in main memory. We present different representations for binary raster data, general raster data and time-evolving raster data. We experimentally compare our proposals with traditional storage mechanisms such as linear quadtrees or compressed GeoTIFF files. Results show that our structures are up to 10 times smaller than classical linear quadtrees, and even comparable in space to non-querieable representations of raster data, while efficiently answering a number of typical queries.

Citations (13)

Summary

We haven't generated a summary for this paper yet.