Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approval-Based Apportionment (1911.08365v2)

Published 19 Nov 2019 in cs.GT

Abstract: In the apportionment problem, a fixed number of seats must be distributed among parties in proportion to the number of voters supporting each party. We study a generalization of this setting, in which voters can support multiple parties by casting approval ballots. This approval-based apportionment setting generalizes traditional apportionment and is a natural restriction of approval-based multiwinner elections, where approval ballots range over individual candidates instead of parties. Using techniques from both apportionment and multiwinner elections, we identify rules that generalize the D'Hondt apportionment method and that satisfy strong axioms which are generalizations of properties commonly studied in the apportionment literature. In fact, the rules we discuss provide representation guarantees that are currently out of reach in the general setting of multiwinner elections: First, we show that core-stable committees are guaranteed to exist and can be found in polynomial time. Second, we demonstrate that extended justified representation is compatible with committee monotonicity (also known as house monotonicity).

Citations (38)

Summary

We haven't generated a summary for this paper yet.