Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast isogeometric solvers for hyperbolic wave propagation problems (1911.08158v1)

Published 19 Nov 2019 in math.NA and cs.NA

Abstract: We use the alternating direction method to simulate implicit dynamics. ur spatial discretization uses isogeometric analysis. Namely, we simulate a (hyperbolic) wave propagation problem in which we use tensor-product B-splines in space and an implicit time marching method to fully discretize the problem. We approximate our discrete operator as a Kronecker product of one-dimensional mass and stiffness matrices. As a result of this algebraic transformation, we can factorize the resulting system of equations in linear (i.e., O(N)) time at each step of the implicit method. We demonstrate the performance of our method in the model P-wave propagation problem. We then extend it to simulate the linear elasticity problem once we decouple the vector problem using alternating triangular methods. We proof theoretically and experimentally the unconditional stability of both methods.

Citations (5)

Summary

We haven't generated a summary for this paper yet.