2000 character limit reached
2D Eigenvalue Problem I: Existence and Number of Solutions (1911.08109v3)
Published 19 Nov 2019 in math.NA and cs.NA
Abstract: A two dimensional eigenvalue problem (2DEVP) of a Hermitian matrix pair $(A, C)$ is introduced in this paper. The 2DEVP can be viewed as a linear algebraic formulation of the well-known eigenvalue optimization problem of the parameter matrix $H(\mu) = A - \mu C$. We present fundamental properties of the 2DEVP such as the existence, the necessary and sufficient condition for the finite number of 2D-eigenvalues and variational characterizations. We use eigenvalue optimization problems from the minmax of two Rayleigh quotients and the computation of distance to instability to show their connections with the 2DEVP and new insights of these problems derived from the properties of the 2DEVP.