Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partial AUC optimization based deep speaker embeddings with class-center learning for text-independent speaker verification (1911.08077v1)

Published 19 Nov 2019 in cs.LG, cs.SD, and eess.AS

Abstract: Deep embedding based text-independent speaker verification has demonstrated superior performance to traditional methods in many challenging scenarios. Its loss functions can be generally categorized into two classes, i.e., verification and identification. The verification loss functions match the pipeline of speaker verification, but their implementations are difficult. Thus, most state-of-the-art deep embedding methods use the identification loss functions with softmax output units or their variants. In this paper, we propose a verification loss function, named the maximization of partial area under the Receiver-operating-characteristic (ROC) curve (pAUC), for deep embedding based text-independent speaker verification. We also propose a class-center based training trial construction method to improve the training efficiency, which is critical for the proposed loss function to be comparable to the identification loss in performance. Experiments on the Speaker in the Wild (SITW) and NIST SRE 2016 datasets show that the proposed pAUC loss function is highly competitive with the state-of-the-art identification loss functions.

Citations (25)

Summary

We haven't generated a summary for this paper yet.