Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Visual Dialogue State Tracking for Question Generation (1911.07928v2)

Published 12 Nov 2019 in cs.CV, cs.AI, and cs.LG

Abstract: GuessWhat?! is a visual dialogue task between a guesser and an oracle. The guesser aims to locate an object supposed by the oracle oneself in an image by asking a sequence of Yes/No questions. Asking proper questions with the progress of dialogue is vital for achieving successful final guess. As a result, the progress of dialogue should be properly represented and tracked. Previous models for question generation pay less attention on the representation and tracking of dialogue states, and therefore are prone to asking low quality questions such as repeated questions. This paper proposes visual dialogue state tracking (VDST) based method for question generation. A visual dialogue state is defined as the distribution on objects in the image as well as representations of objects. Representations of objects are updated with the change of the distribution on objects. An object-difference based attention is used to decode new question. The distribution on objects is updated by comparing the question-answer pair and objects. Experimental results on GuessWhat?! dataset show that our model significantly outperforms existing methods and achieves new state-of-the-art performance. It is also noticeable that our model reduces the rate of repeated questions from more than 50% to 21.9% compared with previous state-of-the-art methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Wei Pang (60 papers)
  2. Xiaojie Wang (108 papers)
Citations (33)

Summary

We haven't generated a summary for this paper yet.