Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Temporal Knowledge Graph Embedding Model based on Additive Time Series Decomposition (1911.07893v6)

Published 18 Nov 2019 in cs.LG, cs.AI, and stat.ML

Abstract: Knowledge Graph (KG) embedding has attracted more attention in recent years. Most KG embedding models learn from time-unaware triples. However, the inclusion of temporal information beside triples would further improve the performance of a KGE model. In this regard, we propose ATiSE, a temporal KG embedding model which incorporates time information into entity/relation representations by using Additive Time Series decomposition. Moreover, considering the temporal uncertainty during the evolution of entity/relation representations over time, we map the representations of temporal KGs into the space of multi-dimensional Gaussian distributions. The mean of each entity/relation embedding at a time step shows the current expected position, whereas its covariance (which is temporally stationary) represents its temporal uncertainty. Experimental results show that ATiSE chieves the state-of-the-art on link prediction over four temporal KGs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Chengjin Xu (36 papers)
  2. Mojtaba Nayyeri (29 papers)
  3. Fouad Alkhoury (2 papers)
  4. Hamed Shariat Yazdi (7 papers)
  5. Jens Lehmann (80 papers)
Citations (74)

Summary

We haven't generated a summary for this paper yet.