Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new interface capturing method for Allen-Cahn type equations based on a flow dynamic approach in Lagrangian coordinates, I. One-dimensional case (1911.07830v1)

Published 18 Nov 2019 in math.NA and cs.NA

Abstract: We develop a new Lagrangian approach --- flow dynamic approach to effectively capture the interface in the Allen-Cahn type equations. The underlying principle of this approach is the Energetic Variational Approach (EnVarA), motivated by Rayleigh and Onsager \cite{onsager1931reciprocal,onsager1931reciprocal2}. Its main advantage, comparing with numerical methods in Eulerian coordinates, is that thin interfaces can be effectively captured with few points in the Lagrangian coordinate. We concentrate in the one-dimensional case and construct numerical schemes for the trajectory equation in Lagrangian coordinate that obey the variational structures, and as a consequence, are energy dissipative. Ample numerical results are provided to show that only a fewer points are enough to resolve very thin interfaces by using our Lagrangian approach.

Citations (7)

Summary

We haven't generated a summary for this paper yet.