Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coordinate-wise Armijo's condition (1911.07820v1)

Published 18 Nov 2019 in math.OC, cs.LG, cs.NA, math.NA, and stat.ML

Abstract: Let $z=(x,y)$ be coordinates for the product space $\mathbb{R}{m_1}\times \mathbb{R}{m_2}$. Let $f:\mathbb{R}{m_1}\times \mathbb{R}{m_2}\rightarrow \mathbb{R}$ be a $C1$ function, and $\nabla f=(\partial _xf,\partial _yf)$ its gradient. Fix $0<\alpha <1$. For a point $(x,y) \in \mathbb{R}{m_1}\times \mathbb{R}{m_2}$, a number $\delta >0$ satisfies Armijo's condition at $(x,y)$ if the following inequality holds: \begin{eqnarray*} f(x-\delta \partial _xf,y-\delta \partial _yf)-f(x,y)\leq -\alpha \delta (||\partial _xf||2+||\partial _yf||2). \end{eqnarray*} When $f(x,y)=f_1(x)+f_2(y)$ is a coordinate-wise sum map, we propose the following {\bf coordinate-wise} Armijo's condition. Fix again $0<\alpha <1$. A pair of positive numbers $\delta _1,\delta _2>0$ satisfies the coordinate-wise variant of Armijo's condition at $(x,y)$ if the following inequality holds: \begin{eqnarray*} [f_1(x-\delta _1\nabla f_1(x))+f_2(y-\delta _2\nabla f_2(y))]-[f_1(x)+f_2(y)]\leq -\alpha (\delta _1||\nabla f_1(x)||2+\delta _2||\nabla f_2(y)||2). \end{eqnarray*} We then extend results in our recent previous results, on Backtracking Gradient Descent and some variants, to this setting. We show by an example the advantage of using coordinate-wise Armijo's condition over the usual Armijo's condition.

Citations (2)

Summary

We haven't generated a summary for this paper yet.