Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Convergence Analysis of a Momentum Algorithm with Adaptive Step Size for Non Convex Optimization (1911.07596v2)

Published 18 Nov 2019 in math.OC, cs.LG, and stat.ML

Abstract: Although ADAM is a very popular algorithm for optimizing the weights of neural networks, it has been recently shown that it can diverge even in simple convex optimization examples. Several variants of ADAM have been proposed to circumvent this convergence issue. In this work, we study the ADAM algorithm for smooth nonconvex optimization under a boundedness assumption on the adaptive learning rate. The bound on the adaptive step size depends on the Lipschitz constant of the gradient of the objective function and provides safe theoretical adaptive step sizes. Under this boundedness assumption, we show a novel first order convergence rate result in both deterministic and stochastic contexts. Furthermore, we establish convergence rates of the function value sequence using the Kurdyka-Lojasiewicz property.

Citations (12)

Summary

We haven't generated a summary for this paper yet.