Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Geometric Matrix Completion (1911.07255v3)

Published 17 Nov 2019 in cs.LG, cs.CG, cs.CV, and stat.ML

Abstract: Deep Matrix Factorization (DMF) is an emerging approach to the problem of matrix completion. Recent works have established that gradient descent applied to a DMF model induces an implicit regularization on the rank of the recovered matrix. In this work we interpret the DMF model through the lens of spectral geometry. This allows us to incorporate explicit regularization without breaking the DMF structure, thus enjoying the best of both worlds. In particular, we focus on matrix completion problems with underlying geometric or topological relations between the rows and/or columns. Such relations are prevalent in matrix completion problems that arise in many applications, such as recommender systems and drug-target interaction. Our contributions enable DMF models to exploit these relations, and make them competitive on real benchmarks, while exhibiting one of the first successful applications of deep linear networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.