Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Meta-Reinforced Synthetic Data for One-Shot Fine-Grained Visual Recognition (1911.07164v1)

Published 17 Nov 2019 in cs.CV

Abstract: One-shot fine-grained visual recognition often suffers from the problem of training data scarcity for new fine-grained classes. To alleviate this problem, an off-the-shelf image generator can be applied to synthesize additional training images, but these synthesized images are often not helpful for actually improving the accuracy of one-shot fine-grained recognition. This paper proposes a meta-learning framework to combine generated images with original images, so that the resulting ``hybrid'' training images can improve one-shot learning. Specifically, the generic image generator is updated by a few training instances of novel classes, and a Meta Image Reinforcing Network (MetaIRNet) is proposed to conduct one-shot fine-grained recognition as well as image reinforcement. The model is trained in an end-to-end manner, and our experiments demonstrate consistent improvement over baselines on one-shot fine-grained image classification benchmarks.

Citations (37)

Summary

We haven't generated a summary for this paper yet.