Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feedback Linearization based on Gaussian Processes with event-triggered Online Learning (1911.06565v1)

Published 15 Nov 2019 in eess.SY and cs.SY

Abstract: Combining control engineering with nonparametric modeling techniques from machine learning allows to control systems without analytic description using data-driven models. Most existing approaches separate learning, i.e. the system identification based on a fixed dataset, and control, i.e. the execution of the model-based control law. This separation makes the performance highly sensitive to the initial selection of training data and possibly requires very large datasets. This article proposes a learning feedback linearizing control law using online closed-loop identification. The employed Gaussian process model updates its training data only if the model uncertainty becomes too large. This event-triggered online learning ensures high data efficiency and thereby reduces the computational complexity, which is a major barrier for using Gaussian processes under real-time constraints. We propose safe forgetting strategies of data points to adhere to budget constraint and to further increase data-efficiency. We show asymptotic stability for the tracking error under the proposed event-triggering law and illustrate the effective identification and control in simulation.

Citations (105)

Summary

We haven't generated a summary for this paper yet.